Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response

نویسندگان

  • Masahiro Nakano
  • Yoshiyuki Arai
  • Ippei Kotera
  • Kohki Okabe
  • Yasuhiro Kamei
  • Takeharu Nagai
چکیده

Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly sensitive and genetically encoded fluorescent reporter for ratiometric monitoring of quinones in living cells.

The transcriptional regulator QsrR is converted into a genetically encoded fluorescent probe capable of ratiometric monitoring of quinones in living cells with high sensitivity and selectivity.

متن کامل

A PNIPAM-based fluorescent nanothermometer with ratiometric readout.

A novel molecular thermometer with ratiometric fluorescence readout was designed and synthesized. Within a sensing temperature range of 33 to 41 °C, the fluorescence color of the nanothermometer changes from blue to green. The ratiometric change magnitude is about 8.7-fold, rendering the visual differentiation of color by the naked eyes feasible.

متن کامل

Monitoring Dynamic Changes In Mitochondrial Calcium Levels During Apoptosis Using A Genetically Encoded Calcium Sensor

Dynamic changes in intracellular calcium concentration in response to various stimuli regulates many cellular processes such as proliferation, differentiation, and apoptosis(1). During apoptosis, calcium accumulation in mitochondria promotes the release of pro-apoptotic factors from the mitochondria into the cytosol(2). It is therefore of interest to directly measure mitochondrial calcium in li...

متن کامل

A cationic fluorescent polymeric thermometer for the ratiometric sensing of intracellular temperature.

We developed new cationic fluorescent polymeric thermometers containing both benzothiadiazole and BODIPY units as an environment-sensitive fluorophore and as a reference fluorophore, respectively. The temperature-dependent fluorescence spectra of the thermometers enabled us to perform highly sensitive and practical ratiometric temperature sensing inside living mammalian cells. Intracellular tem...

متن کامل

Mixed-Lanthanoid Metal-Organic Framework for Ratiometric Cryogenic Temperature Sensing.

A ratiometric thermometer based on a mixed-metal Ln(III) metal-organic framework is reported that has good sensitivity in a wide temperature range from 4 to 290 K and a quantum yield of 22% at room temperature. The sensing mechanism in the europium-doped compound Tb0.95Eu0.05HL (H4L = 5-hydroxy-1,2,4-benzenetricarboxylic acid) is based not only on phonon-assisted energy transfer from Tb(III) to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017